

Introduction of the valve

Check valves also known as Dual plate check Valves are mechanical valves that permit gases and liquids to flow in only one direction, preventing proces flow from reversing. They are classified as one-way directional valves. Fluid flow in the desired direction opens the valve, while back flow forces the

A check valve allows fluid to flow through it in only one direction. Check valves are two-port valves, meaning they have two openings in the body, one for fluid to enter and the other for fluid to leave. There are various types of check valves used in a wide variety of applications. Check valves work automatically and most don'tneed control by people or any external control; accordingly, most do not have a activators or stem.

Applications:

Water supply systems (distribution, treatment etc.), irrigation, heating systems, ship building, industrial processes (liquids and gases).

valve closed. The mechanics of check valve operation are not complicated.

Approvals and certifications:

CE/PED Certification,

ANSI 61-2008 (Potable Water) Certification,

SIL, ABS, Bureau Veritas, DNV, ISO9001, API,

Max working pressure

DN50-DN600 PN10/16

Flange PN10 PN16 150LB JIS10K AS"D""E"

Design

DIN3356 GB/T12236

Face to Face

DIN3202 ISO5752

Testing

ISO5208

Body

Material Referencesstandard Coating

GG20 GG25 A126 Cast iron GGG40 GGG45 GGG50 A536 A395 Ductile iron Epoxy Ral 5005

WCB Carbon steel

CF8 CF8M CF3 CF3M Stainless steel

Epoxy Ral 5005

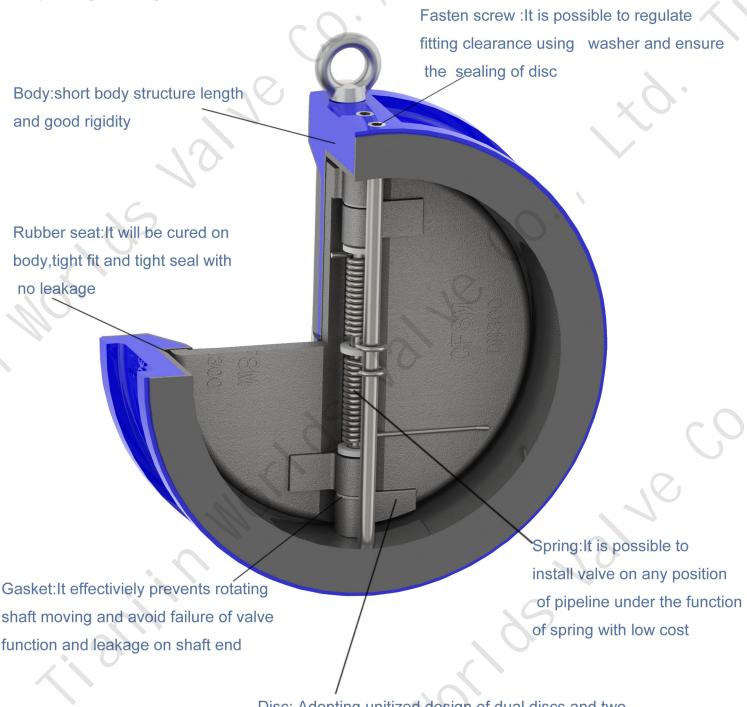
Epoxy Ral 7011

Disc

References Material Standard coating GGG40 GGG45 GGG50 A536 Nickel Brass-Nikle Ductile iron

Carbon steel **WCB**

CF8 CF8M CF3 CF3M SAF2507 SAF2205 Stainless steel

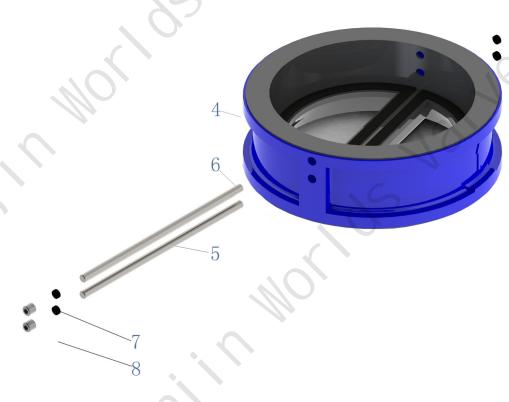

Body Rubber Seat

References	Desigation	Trade Name	Working temp	Applications
NBR	Nitrile Rubber	BUNA-N	-25/+100	Oils ,Hydrocarbons ,Gas, Air ,Water
EPDM	Copolymer	EPDM	-35/+130	Water ,Sea Water,Steam,Diluted Acids
FKM	Fluoroelastomer	VITON	-20/+200	Oils, Hydrocarbons, Acids
CR	Polychloroprene	NEOPRENE	-20/+100	Alkail, Bases,Water
NR	Natural Rubber	NR	-40/+80	Glycols,Abrasive media
CSM	Chlorosulfonate	HYPALON	-20/+125	Acids,mineral

Main Spare Part Material Quality

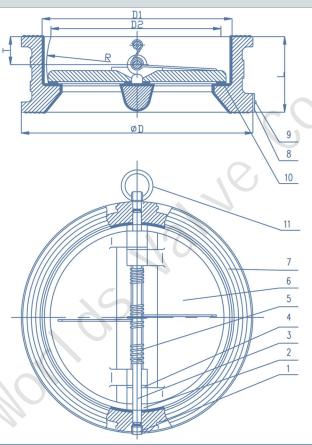
Through precise manufacturing, the main parts of check butterfly valve ensure valve is operating in a long stable and reliable condition

Disc: Adopting unitized design of dual discs and two torsion springs,it can made disc quickly closed itself and remove water-hammer

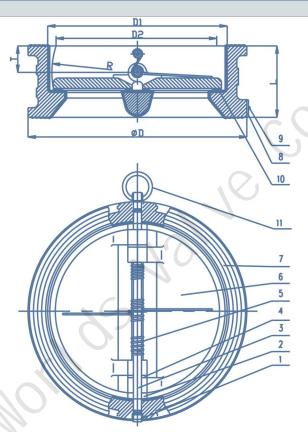


Main Spare Part Material Quality (DN50-DN600)

Item	NAME	MATERIAL	QTY
1	Washer	PTFE	7
2	Spring	SS304/SS316	2
3	Plate	DI/CF8/CF8M/AL-Bronze	2
4	Body	CI/DI/CF8/CF8M/AL-Bronze+Rubber	1
5	Hang Pin	SS304/SS316/SS410/ss416/SS420/Mone1	1
6	Stop Pin	SS304/SS316/SS410/ss416/SS420/Mone1	1
7	Gasket	NBR	4
8	Plug	SS304	4
9	Eyebolt	SS304	1



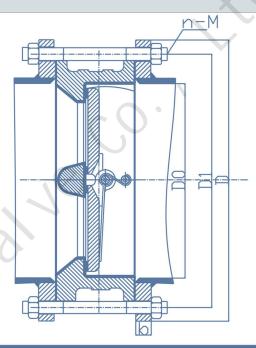
Drawing(50-600)Outline Dimensions


11	Eyebolt	SS304	1
10	Liner	EPDM/NBR/VITON	1
9	Plate rivet	Stainless Steel	2
8	Trademark	Stainless Steel	1
7	Body	DI+Rubber	9'1
6	Disc	CF8/CF8M/2507	2
5	Spring	SS304	2
4	Washer	PTFE	3
3	Pin	SS304	2
2	Washer	PTFE	2
1	Plug	SS304	4
NO.	NAME	MATERIAL	QTY

EN1092-2 PN10/DIN2501 PN10/ISO7005 PN10

SIZE	D	D1	CD2	L	R	T
DN50	106	65	45.56	43	29.7	18.5
DN65	126	78	60.1	46	36.1	21.5
DN80	141	94	66.3	64	43.4	28
DN100	161	117	97.2	64	55.6	27
DN125	191	145	122.4	70	68.1	30
DN150	217	170	144.4	76	78.6	31
DN200	272	222	198	89	104.4	33
DN250	327	265	233.7	114	128	50.5
DN300	377	310	283.2	114	148	43
DN350	437	360	332.9	127	172.4	45
DN400	487	410	380.8	140	197.4	52
DN450	537	450	419.9	152	217.8	58
DN500	592	505	476.3	152	241	58
DN600	694	624	576.6	178	297.4	73

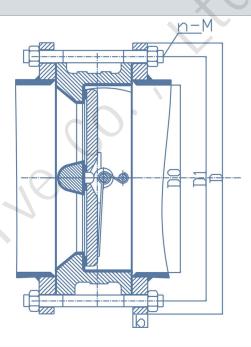
Drawing(50-600) Outline Dimensions


11	Eyebolt	SS304	1
10	Liner	EPDM/NBR/VITON	1
9	Plate rivet	Stainless Steel	2
8	Trademark	Stainless Steel	1
7	Body	DI+Rubber	1
6	Disc	CF8/CF8M/2507	2
5	Spring	SS304	2
4	Washer	PTFE	3
3	Pin	SS304	2
2	Washer	PTFE	2
1	Plug	SS304	4
NO.	NAME	MATERIAL	QTY

EN1092-2 PN16/DIN2501 PN16/ISO7005 PN16

SIZE	D	D1	SD2	L	R	T
DN50	106	65	45.56	43	29.7	18.5
DN65	126	78	60.1	46	36.1	21.5
DN80	141	94	66.3	64	43.4	28
DN100	161	117	97.2	64	55.6	27
DN125	191	145	122.4	70	68.1	30
DN150	217	170	144.4	76	78.6	31
DN200	272	222	198	89	104.4	33
DN250	327	265	233.7	114	128	50.5
DN300	382	310	283.2	114	148	43
DN350	442	360	332.9	127	172.4	45
DN400	494	410	380.8	140	197.4	52
DN450	554	450	419.9	152	217.8	58
DN500	616	505	476.3	152	241	58
DN600	733	624	576.6	178	297.4	73

Necessary Flange for Pipelines (PN10)



Connections Dimensions When Using Flange &Stud Bolts

Siz	. e	O.D.of Pipe	Dia.of Circle of Hole	O.D.of Flange	Thickness of Flange	Qty of flange holes	Dia of Bolts
mm	Inch	D0	D1	D	b	n	М
50	2"	60.3	125	165	19	4	M16
65	2.5"	76.1	145	185	19	4	M16
80	3"	88.9	160	200	19	8	M16
100	4"	114.3	180	220	19	8	M16
125	5"	139.7	210	250	19	8	M16
150	6"	168.3	240	285	19	8	M20
200	8"	219.1	295	340	20	8	M20
250	10°	273	350	395	22	12	M20
300	12"	323.9	400	445	24.5	12	M20
350	14"	355.6	460	505	24.5	16	M24
400	16"	406.4	515	565	24.5	16	M24
450	18"	457	565	615	25.5	20	M24
500	20"	508	620	670	26.5	20	M24
600	24"	610	725	780	30	20	M27

Necessary Flange for Pipelines (PN16)

Connections Dimensions When Using Flange &Stud Bolts

SIz	(O	O.D.of Pipe	Dia.of Circle of Hole	O.D.of Flange	Thickness of Flange	Qty of flange holes	Dia of Bolts
mm	Inch	D0	D1	D	b	n	М
50	2"	60.3	125	165	19	4	M16
65	2.5"	76.1	145	185	19	4	M16
80	3"	88.9	160	200	19	8	M16
100	4"	114.3	180	220	19	8	M16
125	5"	139.7	210	250	19	8	M16
150	6"	168.3	240	285	19	8	M20
200	8"	219.1	295	340	20	12	M20
250	10"	273	355	405	22	12	M24
300	12"	323.9	410	460	24.5	12	M24
350	14"	355.6	470	520	26.5	16	M24
400	16"	406.4	525	580	28	16	M27
450	18"	457	585	640	30	20	M27
500	20"	508	650	715	31.5	20	M30
600	24"	610	770	840	36	20	M33

Loss in Pressure and CV

	Lo	oss in pressure and CV	of CHECK VALVE	E
DN	inch	Loss in pressure (bar)	CV	KV
50	2	0.32	63	54
65	2.5	0.27	81	70
80	3	0.21	185	160
100	C4	0.17	363	314
125	5	0.14	576	498
150	6	0.11	968	837
200	8	0.09	2019	1747
250	10	0.07	3497	3025
300	12	0.06	5333	4613
350	14	0.05	6576	5689
400	16	0.043	9045	7824
450	18	0.04	11768	10180
500	20	0.037	16245	14053
600	24	0.03	24177	20914
700	28	0.028	27531	23816
750	30	0.027	32126	27791
800	32	0.026	38025	32894
900	36	0.024	48483	41940
1000	40	0.02	62966	54469
1050	42	0.019	66712	57709
1200	48	0.018	85969	74368

note:

- 1.Loss in pressure: When medium is water and flow speed is 3m/s at normal temperature.
- 2.CV is the flow volume of flowing through the valve When the valve fully opened.

Applications

A wide variety of body designs, materials, and trim make Wafer Check

valves exceptionally versatile and suitable

for a multitude of liquid and gas fluid applications.

Some of the major markets and typical applications

are depicted here.

Oil and Gas Production

Centrifugal Compressor Discharge

Fire Water Lines

Oil/Steam Separation

Steam and CO2 Injection

Gas/Oil Gathering Systems

Flowlines

Wellheads

Regasification

Liquidfaction

Power Generation

Steam

Condensate

Boiler Feed Pumps

Cooling Towers

Service Water Recirculators

River Water Intake

Petroleum Refining

Hydrogen

Cracking

Steam

Crude Oil

Gasoline

Visbreakers

Naphtha

Sulfur

Petrochemicals

Ethylene

Propylene

Steam

Reboilers

Gases

Chemicals

Chlorine

Phosgene

Aromatics

Polymers

Acids

Air Separation

Caustics

Water and Wastewater

Distribution Lines

Pumping Stations

Sewage Plant Blower Discharge

Chemical Treatment

Fire Protection Systems

HVAC Systems

Desalination

Steel/Primary Metals

Quench Lines

De-Scaling

Continuous Casters

Steam

Condensate

Strippers

Electro-Galvanizing

Pulp and Paper

Bleaching Lines

Black Liquor

Green Liquor

White Water

Steam

Chemical Recovery

Marine

Oil Tankers

Tanker Loading Terminals

Offshore Platforms

Sub-Sea Manifolds

Terminal Transfer Lines

Barge Unloading Lines

Shipboard Services

Work principle

The valve must not be installed in pipelines with pulsating flow or near to reciprocating pumps. Installation in a horizontal pipeling

The disc shaft must be in the vertical position.

Features

As a check valve is permanently open in normal service, the flow resistance is a very important feature of a check valve with regard to the energy loss per year which can mount up to many times the initial cost of the valve. We have reduced the pressure loss of our design to very low levels.

- The self acting pivoting check valve of the double disc.
- The superior closing response prior to flow reveal.
- The corrosion resistant springs are designed to quickly close the valve at zero flow to prevent undesirable pressure surges.
 - In the closed position the valve is tight shut off.
 - It opens automatically when the flow starts again.
 - The elastomer seat is vulcanized and bonded to the body casting.
- It is out of the flow path thus ensuring extended seal life. Spherical profiling of the seat ensures positive shut-off even at low pressures and the area adjacent to the seat is also protected by the same elastomer material.
- The use of these design features together with careful material selection makes a product with a high reliability and a low operating costs.

Description for Order

In order to ensure your requirement for usage.please explain in detail in your order:Type,specification, material, norminal pressure,working pressure and temperature used,maximum flow rate pressure difference,medium composition of valve,driving type of valve and standard for connection of valve with pipes ect,

For the convenience usage of consumers, our company can provide flange and bolts completed with valve.and will provide wearing parts according to the requirement of consumers In selection of product types.consumer can present his requirement for product material, connection standard and technical date and give clear declaration in your contract

Our company also can carry out study and development on new product according to requirement of consumer